

JB-003-001607 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

August - 2019

Chemistry: Paper - C-602

(Organic Chemistry & Spectroscopy) (Old Course)

Faculty Code: 003 Subject Code: 001607

Time: $2\frac{1}{2}$ Hours] [Total Marks: 50

Instructions: (1) Total **three** questions. All questions are **compulsory**.

- (2) Question-1 carries 20 marks. Remaining questions-2 and 3 carry 25 marks each.
- (3) Figures at the **right** side indicate the marks of individual question.
- 1 Answer the following questions:

20

- (1) Which terpenaid is present in ginger?
- (2) Give structure of isoprene.
- (3) Give two names of any amino acids.
- (4) Write structure of TNT.
- (5) Amino acids can be obtained by the hydrolysis of _____.
- (6) Parathion is _____. (Drug / Dye / Perfume / Insecticide)
- (7) Write the structure of naphthalene.
- (8) Ph-Br + ____ + Br Ph \rightarrow \bigcirc + 2 NaBr. Write the catalyst used.
- (9) Conformers are also known as Rotamers. (True or False)
- (10) Dihedral angle in fully eclipsed conformers of two bulky groups is ______. (0°, 10°, 100°, 120°, 180°)

	(11)	Give full form of NMR.		
	(12)	Deuterim will show signal in PMR. (True or False)		
	(13)	$5\delta = \underline{} \tau. (0, 10, 15, 5)$		
	(14)	Spinning bar magnet is called		
	(15)	Diethylether will give signals in PMR spectrum. (1, 2, 3, 4)		
	(16)	The highest intensity peak in Mass Spectrum is called peak.		
	(17)	The energy of electron beam, bombarded on molecule (in ionisation chamber) iseV. (7, 70, 100, 700)		
	(18)	m/e value of molar ion peak, indicates (MF, MW, Functional group)		
	(19)	Give equation to find DBE.		
	(20)	If any substance shows 260 nm UV peak, it means, aromatic (or (conjugate) d.b.) is absent. (True or False)		
2	(a)	Answer any three:		
		(1) Define - Terpenoids.		
		(2) Difference between proteins and polypeptides.		
		(3) Write structural formulae of Baygon and PETN.		
		(4) Explain classification of polynuclear hydrocarbons.		
		(5) Explain isolation of essential oil by fat method.		
		(6) Classify - Amino acids.		
(b) Answer any three :		Answer any three:		
		(1) Explain: Isoprene rule.		
		(2) Give synthesis of Geranic acid.		
		(3) Write short note: Zwitter ion.		
		(4) Define: Explasive, perfume and pesticides.		
		(5) Give synthesis of RDX.		
		(6) Write synthesis of Naphthalene.		

	(c)	Answer any two:		
		(1)	Explain conformation of n-Butane.	
		(2)	Describe chemical reactions for Naphthalene.	
		(3)	Give synthesis of Thyroxine.	
		(4)	Discuss the constitution of α -Terpineol.	
		(5)	Give synthesis of Polypeptides.	
3	(a)	Ans	wer any three:	6
		(1)	Define: Equivalent and nonequivalent protons.	
		(2)	Which solvents are used in PMR spectroscopy ? Give examples.	
		(3)	$\rm MF: C_{17}H_{36},\ gives\ one\ PMR\ signal.$ Find its structure.	
		(4)	What informations can be abtained from mass spectroscopy?	
		(5)	Give the names of different parts of mass spectrometer.	
		(6)	Give No. of signals and splitting for undermentioned compound.	
			$H_2C = CH - Cl$	
	(b)	Ans	wer any three:	9
		(1)	Explain: Chemical shift.	
		(2)	What is spin-spin coupling constant "J" ?	
		(3)	Explain: Shielding and Deshielding effect.	
		(4)	Discuss: McLafferty Rearrangement.	
		(5)	Write PMR spectra of Ethylbenzene.	
	(c)	Ans	wer any two:	10
		(1)	Explain - Mass spectra of alkane.	
		(2)	Discuss PMR spectra of cyclohexane at different lowered temperatures.	
		(3)	Describe the advantages of using TMS as reference.	
		(4)	Write short note: Deuterium Labelling.	
JB-	003-0	0160	7] 3 [Con	td

(5) Derive the structure using the following spectral data:

 $\mathrm{MF}:\,\mathrm{C_8H_{18}O_4}$

UV: No absorption above 200 nm

IR: 2941, 2857, 1745, 1458, $1180 \,\mathrm{cm}^{-1}$

PMR : (a) quartet, 4.14 $\,\delta\,,\,\,4\,\,H$

(b) singlet, 2.6 δ , 4 H

(c) triplet, 1.2 δ, 6 H

Spectral Data

Infra-Red Data	$v^- cm^{-1}$		
Alkane (Stratching)	С-Н	2850-2960 (v)	
Alkane (bending)	-CH ₃	1370–1395 (cm) 1430 – 1470 (sh)	
	$-CH_2$	1445-1485(sh)	
Alkane gem dimethyl	-C(CH ₃) ₂	1480-1475 (m) &	
		1375-1385(m)	
	$-C(CH_3)_3$	1365 (s)	
Alkene (stretching)	=C-H	3100-3200 (m)	
Alkyene (st.)	C-H	3200–3300 (m)	
Aromatic	C-H	3010-3100 (cm)	
Aromatic ring st.	C=C	1500–1650 (m,v)	
Alkene	>C=C<	1610–1650 (v)	

Alkyene	$-C \equiv C$	2100–2260(s)	
Aldehyde (st)	-С-Н	2820-28 80 (w) &	
		2775-2700 (w)	
Aldehýdo	C = O	1740-1720 (s)	
Ketone	C = O	1725-1710 (s)	
Carboxylic acid	C = 0	1725-1705(s)	
Ester	C-= 0	1730-1750 (s)	
Amide	C = O	1640-1670 (s)	
Anhydride	C = O	1810-1860 (e)	L
		1740-1790 (s)	
Acid chloride	C=O	1800(e)	
Ether	C-O-C	1070-1150 (s)	
Alcohol, ester, carboxyli	c		
acid, anhydride, phenol	C-O	1000-1280 (s)	
Alcohol, Phenol (st.)	Free-OH	3600-3650 (sh)	
	bonded -OH	3200-3 500 (b)	
Carboxylic Acid (st.)	Free - OH	3200-3400 (b)	
	bondéd -OH	2500- 3200 (b)	
Amines (st.)	N-H	3330-3500 (doub)	et)
Bending	-N-H	1550-1640 (m)	
Nitrile (st.)	-C = N	2210-2280 (s)	
Bending	-C = N	1250-1340 (m)	
Alkene monosubtituted			
(Vinyl gp.)	CH ₂ =CH-	985-995 _(s) &	
		905-915 _(a)	
Alkene disubstituted	Cis	690(e)	
Alkene disubstituted	Trans	970-960 (s)	•
Ar-C-H out of plane			
bending A	Adjucent Hatom		
	5	700 _(s) & 750 _(s, v)	
	4	750 _(s)	
	3	780 _(v)	
	2	830 (\$)	
ID 009 0016071	1	850(v)	[Contd
JB-003-001607]	6		l Conta

NMR Data: Chemical Shift:

Types of proton		Chemical shift in 8 ppm.
Primary	R-CH ₃	0.9
Secondary	R_{q} - CH_{2}	1.3
Tertiary	R ₃ -CH	1.5
Vinylic	C = C - H	4.6-5.9
Acetylinic	$C \equiv C - H$	2.3
Aromatic	Ar-H	6-8.5
Benzylic	Ar-C-H	2.2-3
Allylic	C=C-CH ₃	1.7
Flourides	HC-F	4-4.5
Bromide	HC-Br	2.5-4
Iodides	HC-I	2-4
Alcohols	HC-OH	3.4-4
Ethers	HC-OR	3.3-4
Esters	RCOO-CH	3.7-4.1
Acids	HC-COOH	2-2.6
Carbonyl comp.	HC-C=O	2-2.7
Aldehydic	rcho	9-10
Hydroxylic	ROH	1-5.5
Phenolic	Ar-OH	4-12
Carboxylic	R-COOH	10.5-12
Amino	R-NH ₂	1-5